Investigation of the changes of biophysical/mechanical characteristics of differentiating preosteoblasts in vitro
نویسندگان
چکیده
BACKGROUND Topography, stiffness, and composition of biomaterials play a crucial role in cell behaviors. In this study, we have investigated biochemical (gene markers), biophysical (roughness), and biomechanical (stiffness) changes during the osteogenic differentiation of preosteoblasts on gelatin matrices. RESULTS Our results demonstrate that gelatin matrices offer a favorable microenvironment for preosteoblasts as determined by focal adhesion and filopodia formation. The osteogenic differentiation potential of preosteoblasts on gelatin matrices is confirmed by qualitative (Alizarin red, von kossa staining, immunofluorescence, and gene expression) and quantitative analyses (alkaline phosphatase activity and calcium content). The biomechanical and biophysical properties of differentiating preosteoblasts are analyzed using atomic force microscopy (AFM) and micro indentation. The results show sequential and significant increases in preosteoblasts roughness and stiffness during osteogenic differentiation, both of which are directly proportional to the progress of osteogenesis. Cell proliferation, height, and spreading area seem to have no direct correlation with differentiation; however, they may be indirectly related to osteogenesis. CONCLUSIONS The increased stiffness and roughness is attributed to the mineralized bone matrix and enhanced osteogenic extracellular matrix protein. This report indicates that biophysical and biomechanical aspects during in vitro cellular/extracellular changes can be used as biomarkers for the analysis of cell differentiation.
منابع مشابه
Erratum to: Investigation of the changes of biophysical/mechanical characteristics of differentiating preosteoblasts in vitro
[This corrects the article DOI: 10.1186/s40824-015-0046-y.].
متن کاملInvestigation of FLK-1 Gene Expression in Differentiated Mesenchymal Stem Cells, Exposed to Chemical, Mechanical and Chemical-mechanical Factors, in order to Study the Differentiation and its Stability
Background: Mesenchymal stem cells (MSCs) are multipotent cells, capable of differentiating into different cell lines.They can sense their surrounding biochemical and biophysical factors, which play major roles in their differentiation toward different phenotypes. Therefore, the exposure of these cells to endothelial growth factor (VEGF) as well as hemodynamic biomechanical forces, which act on...
متن کاملBiophysical Characteristics of Deli River Watershed to Know Potential Flooding in Medan City, Indonesia
This research aims to analysis the biophysical characteristics of watershed of Deli River to know potential flooding in Medan. The research is conducted at Deli River, which is located in 3 locations in North Sumatera namely Karo Regency, Deli Serdang and Medan City. Indonesia. This research used field survey method, survey activity in the form of observation and verification of characterizatio...
متن کاملEffect of antihypertensive agents - captopril and nifedipine - on the functional properties of rat heart mitochondria
Objective(s): Investigation of acute effect on cellular bioenergetics provides the opportunity to characterize the possible adverse effects of drugs more comprehensively. This study aimed to investigate the changes in biochemical and biophysical properties of heart mitochondria induced by captopril and nifedipine antihypertensive treatment. Materials and Methods: Male, 12-week-old Wistar rats i...
متن کاملAn experimental investigation of rheological characteristics of non- Newtonian nanofluids
Rheological characteristics of Al2O3, CuO and TiO2 nano particles were investigated in oil asthe base fluid at 1 and 2 wt.%. Constitutive relations for non-Newtonian fluid were discussedbased on the power-law model. Measured viscosities of each nanofluid were used to evaluatethe power-law and consistency index. Results indicated that the nanofluid viscosity decreasedby increasing the concentrat...
متن کامل